
2

02
IB/G/Jun22/8525/1A

Do not write
outside the

box

0 1 An algorithm, that uses the modulus operator, has been represented using
pseudo-code in Figure 1.

• Line numbers are included but are not part of the algorithm.

Figure 1

1 i  USERINPUT
2 IF i MOD 2 = 0 THEN

3 OUTPUT i * i

4 ELSE

5 OUTPUT i

6 ENDIF

The modulus operator is used to calculate the remainder after dividing one integer by
another.

For example:
• 14 MOD 3 evaluates to 2
• 24 MOD 5 evaluates to 4

0 1 . 1 Shade one lozenge that shows the line number where selection is first used in the
algorithm in Figure 1.

[1 mark]

A Line number 1

B Line number 2

C Line number 3

D Line number 4

2.4 Relational Operations PhysicsAndMathsTutor.com

3

03
Turn over ►

IB/G/Jun22/8525/1A

Do not write
outside the

box 0 1 . 2 Shade one lozenge that shows the output from the algorithm in Figure 1 when the
user input is 4

 [1 mark]

A 0

B 2

C 4

D 8

E 16

0 1 . 3 Shade one lozenge that shows the line number where assignment is first used in the
algorithm in Figure 1.

 [1 mark]

A Line number 1

B Line number 2

C Line number 3

D Line number 4

0 1 . 4 Shade one lozenge that shows the line number that contains a relational operator in
the algorithm in Figure 1.

[1 mark]

A Line number 1

B Line number 2

C Line number 3

D Line number 4

2.4 Relational Operations PhysicsAndMathsTutor.com

4

04
IB/G/Jun22/8525/1A

Do not write
outside the

box Figure 1 has been included again below.

Figure 1

1 i  USERINPUT
2 IF i MOD 2 = 0 THEN

3 OUTPUT i * i

4 ELSE

5 OUTPUT i

6 ENDIF

0 1 . 6 Figure 2 shows an implementation of the algorithm in Figure 1 using the C#
programming language.

• Line numbers are included but are not part of the program.

Figure 2

 1 Console.Write("Enter a number: ");

2 int i = Convert.ToInt32(Console.ReadLine());

3 if (i % 2 == 0) {

4 Console.WriteLine(i * i);

5 }

6 else {

7 Console.WriteLine(i);

8 }

The program in Figure 2 needs to be changed so that it repeats five times using
definite (count controlled) iteration.

Shade one lozenge next to the program that does this correctly.
[1 mark]

0 1 . 5 Shade one lozenge to show which of the following is a true statement about the
algorithm in Figure 1.

 [1 mark]

A This algorithm uses a Boolean operator.

B This algorithm uses a named constant.

C This algorithm uses iteration.

D This algorithm uses the multiplication operator.

2.4 Relational Operations PhysicsAndMathsTutor.com

5

05
Turn over ►

IB/G/Jun22/8525/1A

Do not write
outside the

box

A

for (int x = 0; x < 5; x++) {
 Console.Write("Enter a number: ");
 int i = Convert.ToInt32(Console.ReadLine());
 if (i % 2 == 0) {
 Console.WriteLine(i * i);
 }
 else {
 Console.WriteLine(i);
 }
}

B

for (int x = 0; x < 6; x++) {
 Console.Write("Enter a number: ");
 int i = Convert.ToInt32(Console.ReadLine());
 if (i % 2 == 0) {
 Console.WriteLine(i * i);
 }
 else {

 Console.WriteLine(i);
 }
}

C

int x = 1;
while (x != 6) {
 Console.Write("Enter a number: ");
 int i = Convert.ToInt32(Console.ReadLine());
 if (i % 2 == 0) {
 Console.WriteLine(i * i);
 }
 else {
 Console.WriteLine(i);
 }
 x = x + 1;
}

D

int x = 6;
while (x != 0) {
 Console.Write("Enter a number: ");
 int i = Convert.ToInt32(Console.ReadLine());
 if (i % 2 == 0) {
 Console.WriteLine(i * i);
 }
 else {
 Console.WriteLine(i);
 }
 x = x - 1;
} 6

2.4 Relational Operations PhysicsAndMathsTutor.com

6

06
IB/G/Jun22/8525/1A

Do not write
outside the

box

0 2

 Figure 3 shows an algorithm, represented using pseudo-code, that calculates the
delivery cost for an order from a takeaway company.

Figure 3

 orderTotal  USERINPUT
deliveryDistance  USERINPUT
deliveryCost  0.0
messageOne  "Minimum spend not met"
messageTwo  "Delivery not possible"
IF deliveryDistance ≤ 5 AND orderTotal > 0.0 THEN
 IF orderTotal > 50.0 THEN

 deliveryCost  1.5
 OUTPUT deliveryCost
 ELSE IF orderTotal > 25.0 THEN

 deliveryCost  (orderTotal / 10) * 2
 OUTPUT deliveryCost
 ELSE
 OUTPUT messageOne
 ENDIF
ELSE
 OUTPUT messageTwo
ENDIF

0 2

. 1

Using Figure 3, complete the table.
[2 marks]

 Input value of

orderTotal
Input value of

deliveryDistance Output

55.5 2

35.0 5

0 2

. 2

State how many possible values the result of the comparison
deliveryDistance ≤ 5 could have in the algorithm shown in Figure 3.

[1 mark]

2.4 Relational Operations PhysicsAndMathsTutor.com

7

07
Turn over ►

IB/G/Jun22/8525/1A

Do not write
outside the

box 0 2 . 3 State the most suitable data type for the following variables used in Figure 3.
[2 marks]

Variable identifier Data type

deliveryCost

messageOne

0 2 . 4 State one other common data type that you have not given in your answer to
Question 02.3.

[1 mark]

Turn over for the next question

2.4 Relational Operations PhysicsAndMathsTutor.com

6
Do not write
outside the

box
0 3 A programmer has written a C# program that asks the user to input two

integers and then output which of the two integers is the largest.
Complete the program by filling in the gaps using the information in Figure 3.
Each item in Figure 3 should only be used once.

[5 marks]
Figure 3

Console.Write num1 num2 output

else < > else if

string double int

int num1;

num2;

Console.WriteLine("Enter a number: ");

num1 = int.Parse(Console.ReadLine());

Console.WriteLine("Enter another number: ");

num2 = int.Parse(Console.ReadLine());

if (num1 > num2)

{

Console.WriteLine(" is bigger.");

}

else

if (num1 num2)

{

Console.WriteLine(" is bigger.");

}

{

Console.WriteLine("The numbers are equal.");

}

2.4 Relational Operations PhysicsAndMathsTutor.com

4

04
IB/G/Jun18/8520/1

Do not write
outside the

box

0 4 The algorithm in Figure 1 has been developed to automate the quantity of dog
biscuits to put in a dog bowl at certain times of the day. The algorithm contains
an error.

• Line numbers are included but are not part of the algorithm.

Figure 1

1 time  USERINPUT
2 IF time = 'breakfast' THEN
3 q  1
4 ELSE IF time = 'lunch' THEN
5 q  4
6 ELSE IF time = 'dinner' THEN
7 a  2
8 ELSE
9 OUTPUT 'time not recognised'
10 ENDIF
11 FOR n  1 TO q
12 IF n < 3 THEN
13 DISPENSE_BISCUIT('chewies')
14 ELSE
15 DISPENSE_BISCUIT('crunchy')
16 ENDIF
17 ENDFOR

0 4 . 1 Shade one lozenge which shows the line number where selection is first used
in the algorithm shown in Figure 1.

[1 mark]

A Line number 2

B Line number 4

C Line number 9

D Line number 12

2.4 Relational Operations PhysicsAndMathsTutor.com

5

05

Turn over ►

IB/G/Jun18/8520/1

Do not write
outside the

box

0 4 . 2 Shade one lozenge which shows the line number where iteration is first used
in the algorithm shown in Figure 1.

[1 mark]

A Line number 1

B Line number 8

C Line number 11

D Line number 13

0 4 . 3 Shade one lozenge which shows how many times the subroutine
DISPENSE_BISCUIT would be called if the user input is 'breakfast'.

[1 mark]

A 1 subroutine call

B 2 subroutine calls

C 3 subroutine calls

D 4 subroutine calls

0 4 . 4 Shade one lozenge which shows the data type of the variable time in the
algorithm shown in Figure 1.

[1 mark]

A Date/Time

B String

C Integer

D Real

2.4 Relational Operations PhysicsAndMathsTutor.com

6

06
IB/G/Jun18/8520/1

Do not write
outside the

box

0 4 . 5 State how many times the subroutine DISPENSE_BISCUIT will be called
with the parameter 'chewies' if the user input is 'lunch'.

[1 mark]

0 4 . 6 State how many possible values the result of the comparison
time = 'dinner' could have in the algorithm shown in Figure 1.

[1 mark]

0 4 . 7 The programmer realises they have made a mistake. State the line number
of the algorithm shown in Figure 1 where the error has been made.

[1 mark]

0 4 . 8 Write one line of code that would correct the error found in the algorithm in
Figure 1.

[1 mark]

8

2.4 Relational Operations PhysicsAndMathsTutor.com

12

12
IB/G/Jun19/8520/1

Do not write
outside the

box 0 5 Run length encoding (RLE) is a form of compression that creates frequency/data
pairs to describe the original data.

For example, an RLE of the bit pattern 00000011101111 could be
6 0 3 1 1 0 4 1 because there are six 0s followed by three 1s followed by
one 0 and finally four 1s.

The algorithm in Figure 7 is designed to output an RLE for a bit pattern that has
been entered by the user.

Five parts of the code labelled L1, L2, L3, L4 and L5 are missing.

• Note that indexing starts at zero.

Figure 7
pattern ← L1
i ← L2
count ← 1
WHILE i < LEN(pattern)-1
 IF pattern[i] L3 pattern[i+1] THEN
 count ← count + 1
 ELSE
 L4
 OUTPUT pattern[i]
 count ← 1
 ENDIF
 L5
ENDWHILE
OUTPUT count
OUTPUT pattern[i]

0 5 . 1 Shade one lozenge to show what code should be written at point L1 of the
algorithm.

[1 mark]

A OUTPUT

B ꞌRLEꞌ

C True

D USERINPUT

2.4 Relational Operations PhysicsAndMathsTutor.com

13

13

Turn over ►

IB/G/Jun19/8520/1

Do not write
outside the

box 0 5 . 2 Shade one lozenge to show what value should be written at point L2 of the
algorithm.

[1 mark]

A -1

B 0

C 1

D 2

0 5 . 3 Shade one lozenge to show what operator should be written at point L3 of the
algorithm.

[1 mark]

A =

B ≤

C <

D ≠

0 5 . 4 Shade one lozenge to show what code should be written at point L4 of the
algorithm.

[1 mark]

A count

B count ← count - 1

C count ← USERINPUT

D OUTPUT count

2.4 Relational Operations PhysicsAndMathsTutor.com

14

14
IB/G/Jun19/8520/1

Do not write
outside the

box

10

0 5 . 5 Shade one lozenge to show what code should be written at point L5 of the
algorithm.

[1 mark]

A i ← i * 2

B i ← i + 1

C i ← i + 2

D i ← i DIV 2

0 5 . 6 State a run length encoding of the series of characters ttjjeeess
 [2 marks]

0 5 . 7 A developer implements the algorithm shown in Figure 7 and tests their code to
check that it is working correctly. The developer tests it only with the input bit
pattern that consists of six zeros and it correctly outputs 6 0.

Using example test data, state three further tests that the developer could use to
improve the testing of their code.

[3 marks]

2.4 Relational Operations PhysicsAndMathsTutor.com

6

06
IB/G/Jun24/8525/1A

Do not write
outside the

box 0 6 Figure 2 shows an algorithm, represented using pseudo-code.

• Line numbers are included but are not part of the algorithm.

Figure 2

1 num  USERINPUT
2 IF NOT(num > 1) OR num > 20 THEN
3 OUTPUT "False"
4 ELSEIF num > 1 AND num < 15 THEN
5 OUTPUT "Almost"
6 ELSEIF num MOD 5 = 0 THEN
7 OUTPUT "True"
8 ELSE
9 OUTPUT "Unknown"
10 ENDIF

The modulus operator is used to calculate the remainder after dividing one integer by
another.

For example:
• 14 MOD 3 evaluates to 2
• 24 MOD 5 evaluates to 4

0 6 . 1 Where is a relational operator first used in the algorithm in Figure 2?

Shade one lozenge.
[1 mark]

A Line number 1

B Line number 2

C Line number 3

D Line number 6

2.4 Relational Operations PhysicsAndMathsTutor.com

24

24
IB/G/Jun24/8525/1A

Do not write
outside the

box 0 7 A program is being written to solve a sliding puzzle.

• The sliding puzzle uses a 3 x 3 board.
• The board contains eight tiles and one blank space.
• Each tile is numbered from 1 to 8
• On each turn, a tile can only move one position up, down, left, or right.
• A tile can only be moved into the blank space if it is next to the blank space.
• The puzzle is solved when the tiles are in the correct final positions.

Figure 10 shows an example of how the tiles might be arranged on the board at the
start of the game with the blank space in the position (0, 1).

Figure 11 shows the correct final positions for the tiles when the puzzle is solved.

The blank space (shown in black) is represented in the program as number 0

Figure 10 Figure 11

2.4 Relational Operations PhysicsAndMathsTutor.com

25

25

Turn over ►

IB/G/Jun24/8525/1A

Do not write
outside the

box Table 3 describes the purpose of three subroutines the program uses.

Table 3

Subroutine Purpose

getTile(row, column) Returns the number of the tile on the board in the
position (row, column)

For example:
• getTile(1, 0) will return the value 5 if it is

used on the board in Figure 12
• getTile(1, 2) will return the value 0 if it is

used on the board in Figure 12.

move(row, column) Moves the tile in position (row, column) to
the blank space, if the blank space is next to that
tile.

If the position (row, column) is not next to
the blank space, no move will be made.

For example:
• move(0, 2) would change the board shown

in Figure 12 to the board shown in Figure 13
• move(2, 0) would not make a move if used

on the board shown in Figure 12.

displayBoard() Displays the board showing the current position
of each tile.

Figure 12 Figure 13

2.4 Relational Operations PhysicsAndMathsTutor.com

26

26
IB/G/Jun24/8525/1A

Do not write
outside the

box 0 7 . 1 The C# program shown in Figure 14 uses the subroutines in Table 3, on page 25.

The program is used with the board shown in Figure 15.

Figure 14

if (getTile(1, 0) == 0)
{
 move(2, 0);
}
if (getTile(2, 0) == 0)
{
 move(2, 1);
}
displayBoard();

Figure 15

Complete the board to show the new positions of the tiles after the program in
Figure 14 is run.

[2 marks]

2.4 Relational Operations PhysicsAndMathsTutor.com

